
mortar-rdb Documentation
Release 3.0.0

Simplistix Ltd

Mar 07, 2019

Contents

1 Installation Instructions 3

2 Basic Usage 5
2.1 Development . 5
2.2 Testing . 7
2.3 Release . 8

3 Sequences 9

4 API Reference 11
4.1 mortar_rdb . 11
4.2 mortar_rdb.controlled . 12
4.3 mortar_rdb.testing . 13
4.4 mortar_rdb.sequence . 14
4.5 mortar_rdb.interfaces . 15

5 Development 17
5.1 Setting up a virtualenv . 17
5.2 Running the tests . 17
5.3 Building the documentation . 18
5.4 Making a release . 18

6 Changes 19
6.1 3.0.0 (7 Mar 2019) . 19
6.2 2.2.1 (15 Aug 2016) . 19
6.3 2.2.0 (29 Oct 2015) . 19
6.4 2.1.1 (4 Oct 2015) . 19
6.5 2.1.0 (4 Oct 2015) . 19
6.6 2.0.0 (29 Oct 2013) . 20
6.7 1.2.1 (30 Jun 2011) . 20
6.8 1.2.0 (30 Jun 2011) . 20
6.9 1.1.0 (27 Feb 2011) . 20
6.10 1.0.1 (19 Feb 2011) . 20
6.11 1.0.0 (18 Feb 2011) . 20

7 License 21

i

8 Indices and tables 23

Python Module Index 25

ii

mortar-rdb Documentation, Release 3.0.0

This package ties together SQLAlchemy and the component architecture to make it easy to develop projects using
SQLAlchemy through their complete lifecycle.

It also includes some common models and mixins that are useful in a variety of projects.

Contents 1

http://www.sqlalchemy.org/
http://pypi.python.org/pypi/zope.component#zope-component-architecture

mortar-rdb Documentation, Release 3.0.0

2 Contents

CHAPTER 1

Installation Instructions

The best way to install mortar_rdb is with pip:

pip install mortar_rdb

Of course, once it’s installed, make sure it’s in your requirements.txt!

Python version requirements

This package has been tested with Python 2.7, 3.4+, MySQL, Postgres and SQLite on Linux, and is also expected
to work on Mac OS X and Windows with any database supported by SQLAlchemy.

3

mortar-rdb Documentation, Release 3.0.0

4 Chapter 1. Installation Instructions

CHAPTER 2

Basic Usage

This narrative documentation covers the use case of developing an application from scratch that uses mortar_rdb
to interact with a relational database through development and testing.

2.1 Development

For this narrative, we’ll assume we’re developing our application in a python package called sample that uses the
following model:

sample/model.py

from mortar_rdb import declarative_base
from mortar_rdb.controlled import Config, scan
from sqlalchemy import Table, Column, Integer, String

Base = declarative_base()

class User(Base):
__tablename__ = 'user'
id = Column(Integer, primary_key=True)
name = Column(String(20))

source = scan('sample')
config = Config(source)

There’s nothing particularly special about this model other than that we’ve used mortar_rdb.
declarative_base() to obtain a declarative base rather than calling sqlalchemy.ext.declarative.
declarative_base(). This means that multiple python packages can all use the same declarative base, without
having to worry about which package first defines the base.

This also means that all tables and models used in our application, regardless of the package they are defined in, can
refer to each other.

5

https://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/api.html#sqlalchemy.ext.declarative.declarative_base
https://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/api.html#sqlalchemy.ext.declarative.declarative_base

mortar-rdb Documentation, Release 3.0.0

To allow us to take advantage of the schema controls provided by mortar_rdb, we have also defined a Config
with a Source returned from a scan(). The source is defined seperately to the configuration for two reasons:

• it allows a configuration in another package to use the source defined here, which encapsulates all the tables
managed by this package.

• it makes it easier to write tests for migration scripts for the tables managed by this package.

To use the above model, we have the following view code:

sample/views.py

from mortar_rdb import get_session
from sample.model import User

def add_user(name):
session = get_session()
session.add(User(name=name))

def edit_user(id,name):
session = get_session()
user = session.query(User).filter(User.id == id).one()
user.name = name

When using mortar_rdb, the session is obtained by calling mortar_rdb.get_session(). This allows the
provision of the session to be independent of its use, which makes testing and deploying to different environments
easier.

It is also advised that application code does not manage committing or rollback of database transactions via the session
unless absolutely necessary. These actions should be the responsibility of the framework running the application.

For the purposes of this narrative, we will use the following micro framework:

sample/run.py

from mortar_rdb import register_session
from sample import views
from sample.config import db_url
from sample.model import config

import sys
import transaction

def main():
register_session(db_url)
name = sys.argv[1]
args = sys.argv[2:]
with transaction.manager:

getattr(views, name)(*args)
print("Ran %r with %r" % (name, args))

if __name__=='__main__':
main()

Although there’s not much to it, the above framework shows the elements you will need to plug in to whatever
framework you choose to use.

6 Chapter 2. Basic Usage

mortar-rdb Documentation, Release 3.0.0

The main one of these is the call to register_session() which sets up the components necessary for
get_session() to return a Session object.

The example framework is also shown to manage these sessions using the transaction package. Should your
framework not use this package, you are strongly suggested to read the documentation for register_session()
in detail to make sure you pass the correct parameters to get the behaviour required by your framework.

2.2 Testing

It’s alway a good idea to write automated tests, preferably before writing the code under test. mortar_rdb aids this
by providing the mortar_rdb.testing module.

The following example shows how to provides minimal coverage using mortar_rdb.testing.
register_session() and illustrates how the abstraction of configuring a session from obtaining a session in
mortar_rdb makes testing easier:

sample/tests.py

from mortar_rdb import get_session
from mortar_rdb.testing import register_session
from sample.model import User, config
from sample.views import add_user, edit_user
from unittest import TestCase

class Tests(TestCase):

def setUp(self):
self.session = register_session(config=config)

def tearDown(self):
self.session.rollback()

def test_add_user(self):
code under test
add_user('Mr Test')
checks
user = self.session.query(User).one()
self.assertEqual('Mr Test', user.name)

def test_edit_user(self):
setup
self.session.add(User(id=1, name='Mr Chips'))
code under test
edit_user('1', 'Mr Fish')
checks
user = self.session.query(User).one()
self.assertEqual('Mr Fish', user.name)

If you wish to run these tests against a particular database, rather than using the default in-memory SQLite database,
then set the DB_URL enviroment variable to the SQLAlchemy url of the database you’d like to use. For example, if
you run your tests with pytest and are developing in a unix-like environment against a MySQL database, you could
do:

2.2. Testing 7

https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.pytest.org/

mortar-rdb Documentation, Release 3.0.0

$ DB_URL=mysql://scott:tiger@localhost/test pytest

2.3 Release

With the application developed and tested, it is now time to release and deploy it. Users of mortar_rdb are encour-
aged to create a small database management script making use of mortar_rdb.controlled.Scripts.

Here’s is an example for the above model:

sample/db.py

from mortar_rdb.controlled import Scripts
from sample.config import db_url, is_production
from sample.model import config

scripts = Scripts(db_url, config, not is_production)

if __name__=='__main__':
scripts()

This script can be used to create all tables required by the applications Config as follows:

$ bin/db create
For database at sqlite:////test.db:
Creating the following tables:
user

Other commands are are provided by Scripts and both the command line help, obtained with the --help option
to either the script or any of its commands, and documentation are well worth a read.

So, the view code, database model, tests and framework are all now ready and the database has been created. The
framework is now ready to use:

$ bin/run add_user test
Ran 'add_user' with ['test']

8 Chapter 2. Basic Usage

CHAPTER 3

Sequences

Many applications require non-repeating sequences of integer numbers. While some database engines provide struc-
tures for this purpose, others, such as MySQL and SQLite do not.

Alternatively, you may wish to have a more global source of unique integer identifiers that you share across several
database servers.

For either of these cases, you can use the sequence support provided by mortar_rdb.

Usage is very simple. During application configuration, register sequences at the same time as you register the session
to use for a database:

from mortar_rdb import register_session, get_session
from mortar_rdb.sequence import register_sequence

import transaction

register_session(db_url)
with transaction.manager:

session = get_session()
register_sequence('seq1', session)
register_sequence('seq2', session)

You’ll notice that you need to manage a database transaction when you call register_sequence(), either using
the transaction package or by manually calling commit() after the call. This is because registering a sequence,
certainly in the default SequenceImplementation, may require creating a row in a table.

Once registered, whenever you need some unique integers in application code, get hold of the sequence and call its
next() method:

>>> from mortar_rdb import get_session
>>> from mortar_rdb.sequence import get_sequence
>>> seq1 = get_sequence('seq1')
>>> seq2 = get_sequence('seq2')
>>> session = get_session()
>>> seq1.next(session)

(continues on next page)

9

https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.commit

mortar-rdb Documentation, Release 3.0.0

(continued from previous page)

1
>>> seq1.next(session)
2
>>> seq1.next(session)
3
>>> seq2.next(session)
1

Note: The default implementation used by register_sequence() is mortar_rdb.sequence.generic.
SequenceImplementation.

This uses a table called sequences in the database which needs to be created before you first call
register_sequence(). If you are using mortar_rdb.controlled then you can use the source from
mortar_rdb.sequence.generic.source as part of your Config to take care of table creation.

Also, please note that this implementation may cause contention on the table in question. If your database engine
provides native sequences, an implementation that used those would be gratefully received!

10 Chapter 3. Sequences

CHAPTER 4

API Reference

4.1 mortar_rdb

mortar_rdb.declarative_base(**kw)
Return a Base as would be returned by declarative_base().

Only one Base will exist for each combination of parameters that this function is called with. If it is called with
the same combination of parameters more than once, subsequent calls will return the existing Base.

This method should be used so that even if more than one package used by a project defines models, they will
all end up in the same MetaData instance and all have the same declarative registry.

mortar_rdb.drop_tables(engine)
Drop all the tables in the database attached to by the supplied engine.

As many foreign key constraints as possible will be dropped first making this quite brutal!

mortar_rdb.get_session(name=”)
Return a Session instance from the current registry as registered with the supplied name.

mortar_rdb.register_session(url=None, name=”, engine=None, echo=None, transactional=True,
scoped=True, twophase=True)

Create a Session class and register it for later use.

Generally, you’ll only need to pass in a SQLAlchemy connection URL. If you want to register multiple sessions
for a particular application, then you should name them. If you want to provide specific engine configuration,
then you can pass in an Engine instance. In that case, you must not pass in a URL.

Parameters

• echo – If True, then all SQL will be echoed to the python logging framework. This option
cannot be specified if you pass in an engine.

• scoped – If True, then get_session() will return a distinct session for each thread
that it is called from but, within that thread, it will always return the same session. If it is
False, every call to get_session() will return a new session.

11

https://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/api.html#sqlalchemy.ext.declarative.declarative_base
https://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.MetaData
https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session

mortar-rdb Documentation, Release 3.0.0

• transactional – If True, a SQLAlchemy extension will be used that that enables
the transaction package to manage the lifecycle of the SQLAlchemy session (eg:
begin()/commit()/rollback()). This can only be done when scoped sessions are
used.

If False, you will need to make sure you call begin()/commit()/rollback(), as
appropriate, yourself.

• twophase – By default two-phase transactions are used where supported by the underlying
database. Where this causes problems, single-phase transactions can be used for all engines
by passing this parameter as False.

4.2 mortar_rdb.controlled

When a database is used, it’s essential that code using the database only interacts with a database that is of the form
it expects. A corollary of that is that it is important to be able to update the structure of a database from the form
expected by one version of the code to that expected by another version of the code.

mortar_rdb.controlled aims to facilitate this along with providing a command line harness for creating nec-
essary tables within a database, emptying out a non-production database and upgrading a database to a new structure
where SQLAlchemy is used.

4.2.1 Packages, Models and Tables

SQLAlchemy uses Table objects that are mapped to one or more model classes. These objects are defined within
python packages.

4.2.2 Configurations

A single database may contain tables that are defined in more that one package. For example, an authentication
package may contain some table definitions for storing users and their permissions. That package may be used by an
application which also contains a package that defines its own tables.

A Config is a way of expressing which tables should be expected in a database.

In general, it is recommended that a Config is defined once, in whatever package ‘owns’ a particular database. For
example, an application may define a configuration for its own tables and those of any packages on which it relies,
such as the hypothetical authentication package described above. If another application wants to use this application’s
database, it can import the configuration and check that the database structure matches that expected by the code it is
currently using.

class mortar_rdb.controlled.Config(*sources)
A configuration for a particular database to allow control of the schema of that database.

Parameters sources – The Source instances from which to create this configuration.

class mortar_rdb.controlled.Scripts(url, config, failsafe)
A command-line harness for performing schema control functions on a database. You should instantiate this in
a small python script and call it when the script is run as a command, eg:

from mortar_rdb.controlled import Scripts
from sample.model import config

scripts = Scripts('sqlite://', config, True)
(continues on next page)

12 Chapter 4. API Reference

https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.begin
https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.commit
https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.rollback
https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.begin
https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.commit
https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.rollback
https://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Table

mortar-rdb Documentation, Release 3.0.0

(continued from previous page)

if __name__=='__main__':
script()

Writing the script in this style also allows scripts to be used as a :mod:setuptools entry point.

Parameters

• url – The SQLAlchemy url to connect to the database to be managed. If this isn’t known
at the time when this class is instantiated, then use None.

• config – A Config instance describing the schema of the database to be managed.

• failsafe – A boolean value that should be True if it’s okay for the database being
managed to have all its tables dropped. For obvious reasons, this should be False when
managing your production database.

create()
Create all the tables in the configuration in the database

drop()
Drop all tables in the database

class mortar_rdb.controlled.Source(*tables)
A collection of tables that should have their versioning managed together. This usually means they originate
from one package.

Parameters tables – A sequence of Table objects that contain all the tables that will be managed
by the repository in this Source.

mortar_rdb.controlled.scan(package, tables=())
Scan a package or module and return a Source containing the tables from any declaratively mapped models
found, any Table objects explicitly passed in and the sqlalchemy-migrate repository contained within
the package.

Note: While the package parameter is passed as a string, this will be resolved into a module or package object.
It is not a distribution name, although the two are often very similar.

Parameters

• package – A dotted path to the package to be scanned for Table objects.

• tables – A sequence of Table objects to be added to the returned Source. Any tables
not created as part of declaratively mapping a class will need to be passed in using this
sequence as scan() cannot sensibly scan for these objects.

4.3 mortar_rdb.testing

Helpers for unit testing when using mortar_rdb

class mortar_rdb.testing.TestingBase
This is a helper class that can either be used to make declarative_base() return a new, empty Base for
testing purposes.

If writing a suite of unit tests, this can be done as follows:

4.3. mortar_rdb.testing 13

https://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Table
https://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Table
https://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Table
https://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Table

mortar-rdb Documentation, Release 3.0.0

from mortar_rdb.testing import TestingBase
from unittest import TestCase

class YourTestCase(TestCase):

def setUp(self):
self.tb = TestingBase()

def tearDown(self):
self.tb.restore()

If you need a fresh Base for a short section of Python code, TestingBase can also be used as a context
manager:

with TestingBase():
base = declarative_base()
your test code here

mortar_rdb.testing.register_session(url=None, name=”, engine=None, echo=False, trans-
actional=True, scoped=True, config=None, meta-
data=None)

This will create a Session class for testing purposes and register it for later use.

The calling parameters mirror those of mortar_rdb.register_session() but if neither url nor engine
is specified then:

• The environment will be consulted for a variable called DB_URL. If found, that will be used for the url
parameter.

• If url is still None, an implicit url of sqlite:// will be used.

If a Config is passed in then, once any existing content in the database has been removed, any tables controlled
by that config will be created.

If a MetaData instance is passed in, then all tables within it will be created.

Unlike the non-testing register_session, this will also return an instance of the registered session.

Warning: No matter where the url or engine come from, the entire contents of the database they point at
will be destroyed!

4.4 mortar_rdb.sequence

Database independent provision of non-repeating, always-incrementing sequences of integers.

mortar_rdb.sequence.get_sequence(name)
Obtain a previously registered sequence. Once obtained, the next() method should be called as many times
as necessary.

Each call will return one system-wide unique integer that will be greater than any integers previously returned.

mortar_rdb.sequence.register_sequence(name, session, impl=<class ’mor-
tar_rdb.sequence.generic.SequenceImplementation’>)

Register a sequence for later user.

Parameters

14 Chapter 4. API Reference

https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.MetaData

mortar-rdb Documentation, Release 3.0.0

• name – A string containing the name of the sequence.

• session – A Session instance that will be used to set up anything needed in the database
for the sequence to be functional. It will not be retained and may be closed and discarded
once this function has returned.

• impl – A class whose instances implement ISequence. Defaults to mortar_rdb.
sequence.generic.SequenceImplementation.

class mortar_rdb.sequence.generic.SequenceImplementation(name, session)
A sequence implementation that uses a table in the database with one row for each named sequence.

next(session)
Return the next integer in the sequence using the Session provided.

Warning: The current implementation will lock the row (or table, depending on which database you
use) for the sequence in question. This could conceivably cause contention problems if more than one
connection is trying to generate integers from the sequence at one time.

4.5 mortar_rdb.interfaces

Internal interface definitions. Unless you’re doing something pretty special, you don’t need to know about these.

interface mortar_rdb.interfaces.ISession
A marker interface for SQLAlchemy Sessions. This is so that we can register factories that return them.

interface mortar_rdb.interfaces.ISequence
An interface for sequence utility impementations. A sequence is a non-repeating, always-incrementing sequence
of integers.

Implementations of this interface will be instantiated once and then have their next() method called often.

4.5. mortar_rdb.interfaces 15

https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session

mortar-rdb Documentation, Release 3.0.0

16 Chapter 4. API Reference

CHAPTER 5

Development

This package is developed using continuous integration which can be found here:

https://travis-ci.org/Mortar/mortar_rdb

The latest development version of the documentation can be found here:

http://mortar_rdb.readthedocs.org/en/latest/

If you wish to contribute to this project, then you should fork the repository found here:

https://github.com/Mortar/mortar_rdb

Once that has been done and you have a checkout, you can follow these instructions to perform various development
tasks:

5.1 Setting up a virtualenv

The recommended way to set up a development environment is to turn your checkout into a virtualenv and then install
the package in editable form as follows:

$ virtualenv .
$ bin/pip install -U -e .[test,build]

5.2 Running the tests

Once you’ve set up a virtualenv, the tests can be run as follows:

$ bin/pytest

Some of the tests can be run against a specific database to check compatibility with specific database back ends. To
do this, set the DB_URL environment variable to the SQLAlchemy url of the database you’d like to use. For example,
if you are testing in a unix-like environment and want to test against a MySQL database, you could do:

17

https://travis-ci.org/Mortar/mortar_rdb
http://mortar_rdb.readthedocs.org/en/latest/
https://github.com/Mortar/mortar_rdb

mortar-rdb Documentation, Release 3.0.0

$ DB_URL=mysql://scott:tiger@localhost/mortar_rdb_tests bin/test

5.3 Building the documentation

The Sphinx documentation is built by doing the following from the directory containing setup.py:

$ source bin/activate
$ cd docs
$ make html

To check that the description that will be used on PyPI renders properly, do the following:

$ python setup.py --long-description | rst2html.py > desc.html

The resulting desc.html should be checked by opening in a browser.

5.4 Making a release

To make a release, just update the version in setup.py, update the change log, tag it and push to https://github.com/
Mortar/mortar_rdb and Travis CI should take care of the rest.

Once Travis CI is done, make sure to go to https://readthedocs.org/projects/mortar_rdb/versions/ and make sure the
new release is marked as an Active Version.

18 Chapter 5. Development

https://github.com/Mortar/mortar_rdb
https://github.com/Mortar/mortar_rdb
https://readthedocs.org/projects/mortar_rdb/versions/

CHAPTER 6

Changes

6.1 3.0.0 (7 Mar 2019)

• Drop support for the ancient SQLAlchemy extension mechanism.

6.2 2.2.1 (15 Aug 2016)

• Stop passwords showing in logging from Scripts.

6.3 2.2.0 (29 Oct 2015)

• More careful password masking.

• Better support for using controlled.Scripts as part of another script framework.

6.4 2.1.1 (4 Oct 2015)

• Deploy to PyPI using Travis.

6.5 2.1.0 (4 Oct 2015)

• Drop support for Python 2.6.

• Add support for Python 3.4+.

• Move to Read The Docs for documentation.

• Move to virtualenv and nose for development.

19

mortar-rdb Documentation, Release 3.0.0

• Move to Travis CI and Coveralls for automated continuous testing.

6.6 2.0.0 (29 Oct 2013)

• Remove use of sqlalchemy-migrate, alembic is a better bet but not yet introduced.

• Much work to better adhere to PEP 8, including renaming the major functions.

6.7 1.2.1 (30 Jun 2011)

• Add setuptools_git to the build chain so that setuptools include_package_data works once more.

6.8 1.2.0 (30 Jun 2011)

• Pass None as the default for echo rather than False on the advice of Daniel Holth.

• When using register_session(), allow explicit disabling of two-phase commit.

• No longer log passwords during session registration.

• Specify sqlalchemy 0.6 as a requirement, until zope.sqlalchemy is ported, mortar_rdb shouldn’t be
used with sqlalchemy 0.7.

6.9 1.1.0 (27 Feb 2011)

• Allow passing in SessionExtension instances to both registerSession() functions.

• Fixed a bug that resulted in an exception when passing echo=True to mortar_rdb.testing.
registerSession() but not passing a url.

6.10 1.0.1 (19 Feb 2011)

• Fixed a missing declaration of dependency on zope.dottedname.

6.11 1.0.0 (18 Feb 2011)

• Initial Release.

20 Chapter 6. Changes

https://docs.sqlalchemy.org/en/latest/orm/deprecated.html#sqlalchemy.orm.interfaces.SessionExtension

CHAPTER 7

License

Copyright (c) 2011-2015 Simplistix Ltd, 2015-2018 Chris Withers

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

21

mortar-rdb Documentation, Release 3.0.0

22 Chapter 7. License

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

23

mortar-rdb Documentation, Release 3.0.0

24 Chapter 8. Indices and tables

Python Module Index

m
mortar_rdb, 11
mortar_rdb.controlled, 12
mortar_rdb.interfaces, 15
mortar_rdb.sequence, 14
mortar_rdb.sequence.generic, 15
mortar_rdb.testing, 13

25

mortar-rdb Documentation, Release 3.0.0

26 Python Module Index

Index

C
Config (class in mortar_rdb.controlled), 12
create() (mortar_rdb.controlled.Scripts method), 13

D
declarative_base() (in module mortar_rdb), 11
drop() (mortar_rdb.controlled.Scripts method), 13
drop_tables() (in module mortar_rdb), 11

G
get_sequence() (in module mortar_rdb.sequence), 14
get_session() (in module mortar_rdb), 11

I
ISequence (interface in mortar_rdb.interfaces), 15
ISession (interface in mortar_rdb.interfaces), 15

M
mortar_rdb (module), 11
mortar_rdb.controlled (module), 12
mortar_rdb.interfaces (module), 15
mortar_rdb.sequence (module), 14
mortar_rdb.sequence.generic (module), 15
mortar_rdb.testing (module), 13

N
next() (mortar_rdb.sequence.generic.SequenceImplementation

method), 15

R
register_sequence() (in module mortar_rdb.sequence), 14
register_session() (in module mortar_rdb), 11
register_session() (in module mortar_rdb.testing), 14

S
scan() (in module mortar_rdb.controlled), 13
Scripts (class in mortar_rdb.controlled), 12
SequenceImplementation (class in mor-

tar_rdb.sequence.generic), 15

Source (class in mortar_rdb.controlled), 13

T
TestingBase (class in mortar_rdb.testing), 13

27

	Installation Instructions
	Basic Usage
	Development
	Testing
	Release

	Sequences
	API Reference
	mortar_rdb
	mortar_rdb.controlled
	mortar_rdb.testing
	mortar_rdb.sequence
	mortar_rdb.interfaces

	Development
	Setting up a virtualenv
	Running the tests
	Building the documentation
	Making a release

	Changes
	3.0.0 (7 Mar 2019)
	2.2.1 (15 Aug 2016)
	2.2.0 (29 Oct 2015)
	2.1.1 (4 Oct 2015)
	2.1.0 (4 Oct 2015)
	2.0.0 (29 Oct 2013)
	1.2.1 (30 Jun 2011)
	1.2.0 (30 Jun 2011)
	1.1.0 (27 Feb 2011)
	1.0.1 (19 Feb 2011)
	1.0.0 (18 Feb 2011)

	License
	Indices and tables
	Python Module Index

