

Documentation

This package ties together SQLAlchemy [http://www.sqlalchemy.org/] and
the component architecture [http://pypi.python.org/pypi/zope.component#zope-component-architecture] to make it easy to develop projects
using SQLAlchemy through their complete lifecycle.

It also includes some common models and mixins that are useful
in a variety of projects.

	Installation Instructions

	Basic Usage
	Development

	Testing

	Release

	Sequences

	API Reference
	mortar_rdb

	mortar_rdb.controlled

	mortar_rdb.testing

	mortar_rdb.sequence

	mortar_rdb.interfaces

	Development
	Setting up a virtualenv

	Running the tests

	Building the documentation

	Making a release

	Changes
	3.0.0 (7 Mar 2019)

	2.2.1 (15 Aug 2016)

	2.2.0 (29 Oct 2015)

	2.1.1 (4 Oct 2015)

	2.1.0 (4 Oct 2015)

	2.0.0 (29 Oct 2013)

	1.2.1 (30 Jun 2011)

	1.2.0 (30 Jun 2011)

	1.1.0 (27 Feb 2011)

	1.0.1 (19 Feb 2011)

	1.0.0 (18 Feb 2011)

	License

Indices and tables

	Index

	Module Index

	Search Page

Installation Instructions

The best way to install mortar_rdb is with pip:

pip install mortar_rdb

Of course, once it’s installed, make sure it’s in your requirements.txt!

Python version requirements

This package has been tested with Python 2.7, 3.4+, MySQL, Postgres and SQLite
on Linux, and is also expected to work on Mac OS X and Windows with any
database supported by SQLAlchemy.

Basic Usage

This narrative documentation covers the use case of developing an
application from scratch that uses mortar_rdb to interact with a
relational database through development and testing.

Development

For this narrative, we’ll assume we’re developing our application in a
python package called sample that uses the following model:

sample/model.py

from mortar_rdb import declarative_base
from mortar_rdb.controlled import Config, scan
from sqlalchemy import Table, Column, Integer, String

Base = declarative_base()

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String(20))

source = scan('sample')
config = Config(source)

There’s nothing particularly special about this model other than that
we’ve used mortar_rdb.declarative_base() to obtain a declarative base rather
than calling sqlalchemy.ext.declarative.declarative_base() [https://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/api.html#sqlalchemy.ext.declarative.declarative_base]. This
means that multiple python packages can all use the same declarative
base, without having to worry about which package first defines the
base.

This also means that all tables and models used in our application,
regardless of the package they are defined in, can refer to each
other.

To allow us to take advantage of the schema controls provided by
mortar_rdb, we have also defined a Config
with a Source returned from a
scan(). The source is defined seperately to
the configuration for two reasons:

	it allows a configuration in another package to use the source defined
here, which encapsulates all the tables managed by this package.

	it makes it easier to write tests for migration scripts for the
tables managed by this package.

To use the above model, we have the following view code:

sample/views.py

from mortar_rdb import get_session
from sample.model import User

def add_user(name):
 session = get_session()
 session.add(User(name=name))

def edit_user(id,name):
 session = get_session()
 user = session.query(User).filter(User.id == id).one()
 user.name = name

When using mortar_rdb, the session is obtained by calling
mortar_rdb.get_session(). This allows the provision of the session to
be independent of its use, which makes testing and deploying to
different environments easier.

It is also advised that application code does not manage committing or
rollback of database transactions via the session unless absolutely
necessary. These actions should be the responsibility of the framework
running the application.

For the purposes of this narrative, we will use the following micro
framework:

sample/run.py

from mortar_rdb import register_session
from sample import views
from sample.config import db_url
from sample.model import config

import sys
import transaction

def main():
 register_session(db_url)
 name = sys.argv[1]
 args = sys.argv[2:]
 with transaction.manager:
 getattr(views, name)(*args)
 print("Ran %r with %r" % (name, args))

if __name__=='__main__':
 main()

Although there’s not much to it, the above framework shows the
elements you will need to plug in to whatever framework you choose to
use.

The main one of these is the call to register_session()
which sets up the components necessary for get_session() to
return a Session [https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session] object.

The example framework is also shown to manage these sessions using the
transaction package. Should your framework not use this
package, you are strongly suggested to read the documentation for
register_session() in detail to make sure you pass the
correct parameters to get the behaviour required by your framework.

Testing

It’s alway a good idea to write automated tests, preferably before
writing the code under test. mortar_rdb aids this by providing the
mortar_rdb.testing module.

The following example shows how to provides minimal coverage using
mortar_rdb.testing.register_session() and illustrates how the
abstraction of configuring a session from obtaining a session in
mortar_rdb makes testing easier:

sample/tests.py

from mortar_rdb import get_session
from mortar_rdb.testing import register_session
from sample.model import User, config
from sample.views import add_user, edit_user
from unittest import TestCase

class Tests(TestCase):

 def setUp(self):
 self.session = register_session(config=config)

 def tearDown(self):
 self.session.rollback()

 def test_add_user(self):
 # code under test
 add_user('Mr Test')
 # checks
 user = self.session.query(User).one()
 self.assertEqual('Mr Test', user.name)

 def test_edit_user(self):
 # setup
 self.session.add(User(id=1, name='Mr Chips'))
 # code under test
 edit_user('1', 'Mr Fish')
 # checks
 user = self.session.query(User).one()
 self.assertEqual('Mr Fish', user.name)

If you wish to run these tests against a particular database, rather
than using the default in-memory SQLite database, then set the
DB_URL enviroment variable to the SQLAlchemy url of the database
you’d like to use. For example, if you run your tests with pytest [https://docs.pytest.org/]
and are developing in a unix-like environment against a MySQL
database, you could do:

$ DB_URL=mysql://scott:tiger@localhost/test pytest

Release

With the application developed and tested, it is now time to release
and deploy it. Users of mortar_rdb are encouraged to create a small
database management script making use of
mortar_rdb.controlled.Scripts.

Here’s is an example for the above model:

sample/db.py

from mortar_rdb.controlled import Scripts
from sample.config import db_url, is_production
from sample.model import config

scripts = Scripts(db_url, config, not is_production)

if __name__=='__main__':
 scripts()

This script can be used to create all tables required by the
applications Config as follows:

$ bin/db create
For database at sqlite:////test.db:
Creating the following tables:
user

Other commands are are provided by Scripts
and both the command line help, obtained with the --help option to
either the script or any of its commands, and documentation are well
worth a read.

So, the view code, database model, tests and framework are all now
ready and the database has been created. The framework is now ready to
use:

$ bin/run add_user test
Ran 'add_user' with ['test']

Sequences

Many applications require non-repeating sequences of integer numbers.
While some database engines provide structures for this purpose, others,
such as MySQL and SQLite do not.

Alternatively, you may wish to have a more global source of unique
integer identifiers that you share across several database servers.

For either of these cases, you can use the sequence support provided
by mortar_rdb.

Usage is very simple. During application configuration, register
sequences at the same time as you register the session to use for a
database:

from mortar_rdb import register_session, get_session
from mortar_rdb.sequence import register_sequence

import transaction

register_session(db_url)
with transaction.manager:
 session = get_session()
 register_sequence('seq1', session)
 register_sequence('seq2', session)

You’ll notice that you need to manage a database transaction when you
call register_sequence(), either using the
transaction package or by manually calling
commit() [https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.commit] after the call. This is
because registering a sequence, certainly in the default
SequenceImplementation, may require
creating a row in a table.

Once registered, whenever you need some unique integers in application
code, get hold of the sequence and call its
next() method:

>>> from mortar_rdb import get_session
>>> from mortar_rdb.sequence import get_sequence
>>> seq1 = get_sequence('seq1')
>>> seq2 = get_sequence('seq2')
>>> session = get_session()
>>> seq1.next(session)
1
>>> seq1.next(session)
2
>>> seq1.next(session)
3
>>> seq2.next(session)
1

Note

The default implementation used by
register_sequence() is
mortar_rdb.sequence.generic.SequenceImplementation.

This uses a table called sequences in the database which needs
to be created before
you first call register_sequence(). If you
are using mortar_rdb.controlled then you can use the source from
mortar_rdb.sequence.generic.source as part of your
Config to take care of table creation.

Also, please note that this implementation may cause contention on
the table in question. If your database engine provides native
sequences, an implementation that used those would be gratefully
received!

API Reference

mortar_rdb

	
mortar_rdb.declarative_base(**kw)

	Return a Base as would be returned by
declarative_base() [https://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/api.html#sqlalchemy.ext.declarative.declarative_base].

Only one Base will exist for each combination of parameters
that this function is called with. If it is called with the same
combination of parameters more than once, subsequent calls will
return the existing Base.

This method should be used so that even if more than one package
used by a project defines models, they will all end up in the
same MetaData [https://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.MetaData] instance and all have the
same declarative registry.

	
mortar_rdb.drop_tables(engine)

	Drop all the tables in the database attached to by the supplied
engine.

As many foreign key constraints as possible will be dropped
first making this quite brutal!

	
mortar_rdb.get_session(name='')

	Return a Session [https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session] instance from
the current registry as registered with the supplied name.

	
mortar_rdb.register_session(url=None, name='', engine=None, echo=None, transactional=True, scoped=True, twophase=True)

	Create a Session [https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session] class and
register it for later use.

Generally, you’ll only need to pass in a SQLAlchemy
connection URL. If you want to register multiple sessions for a
particular application, then you should name them.
If you want to provide specific engine configuration, then you can
pass in an Engine instance.
In that case, you must not pass in a URL.

	Parameters

	
	echo – If True, then all SQL will be echoed to the python
logging framework. This option cannot be specified if you pass in
an engine.

	scoped – If True, then get_session() will return a distinct
session for each thread that it is called from but, within that thread,
it will always return the same session. If it is False, every call
to get_session() will return a new session.

	transactional – If True, a SQLAlchemy extension will
be used that that enables the transaction package to
manage the lifecycle of the SQLAlchemy session (eg:
begin() [https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.begin]/commit() [https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.commit]/rollback() [https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.rollback]).
This can only be done when scoped sessions are used.

If False, you will need to make sure you call
begin() [https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.begin]/commit() [https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.commit]/rollback() [https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.rollback],
as appropriate, yourself.

	twophase – By default two-phase transactions are used where
supported by the underlying database. Where this causes problems,
single-phase transactions can be used for all engines by passing this
parameter as False.

mortar_rdb.controlled

When a database is used, it’s essential that code using the database
only interacts with a database that is of the form it expects.
A corollary of that is that it is important to be able to update the
structure of a database from the form expected by one version of the
code to that expected by another version of the code.

mortar_rdb.controlled aims to facilitate this along with providing
a command line harness for creating necessary tables within a
database, emptying out a non-production database and upgrading a
database to a new structure where SQLAlchemy is
used.

Packages, Models and Tables

SQLAlchemy uses Table [https://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Table] objects that
are mapped to one or more model classes. These objects are defined
within python packages.

Configurations

A single database may contain tables that are defined in more that one
package. For example, an authentication package may contain some
table definitions for storing users and their permissions. That package
may be used by an application which also contains a package that
defines its own tables.

A Config is a way of expressing
which tables should be expected in a database.

In general, it is recommended that a
Config is defined once, in whatever
package ‘owns’ a particular database. For example, an application may
define a configuration for its own tables and those of any packages on
which it relies, such as the hypothetical authentication package
described above. If another application wants to use this
application’s database, it can import the configuration and check that
the database structure matches that expected by the code it is
currently using.

	
class mortar_rdb.controlled.Config(*sources)

	A configuration for a particular database to allow control
of the schema of that database.

	Parameters

	sources – The Source instances from which to create
this configuration.

	
class mortar_rdb.controlled.Scripts(url, config, failsafe)

	A command-line harness for performing schema control functions on
a database. You should instantiate this in a small python script and
call it when the script is run as a command, eg:

from mortar_rdb.controlled import Scripts
from sample.model import config

scripts = Scripts('sqlite://', config, True)

if __name__=='__main__':
 script()

Writing the script in this style also allows scripts to be
used as a :mod:setuptools entry point.

	Parameters

	
	url – The SQLAlchemy url to connect to the database to be
managed. If this isn’t known at the time when this class is
instantiated, then use None.

	config – A Config instance describing the schema of the database
to be managed.

	failsafe – A boolean value that should be True if it’s okay for the
database being managed to have all its tables dropped. For
obvious reasons, this should be False when managing your
production database.

	
create()

	Create all the tables in the configuration
in the database

	
drop()

	Drop all tables in the database

	
class mortar_rdb.controlled.Source(*tables)

	A collection of tables that should have their versioning managed together.
This usually means they originate from one package.

	Parameters

	tables – A sequence of Table [https://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Table] objects that
contain all the tables that will be managed by the
repository in this Source.

	
mortar_rdb.controlled.scan(package, tables=())

	Scan a package or module and return a
Source containing the tables from any
declaratively mapped models found, any
Table [https://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Table] objects explicitly passed in and
the sqlalchemy-migrate repository contained within the
package.

Note

While the package parameter is passed as a string, this will
be resolved into a module or package object. It is not a
distribution name, although the two are often very similar.

	Parameters

	
	package – A dotted path to the package to be scanned for
Table [https://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Table] objects.

	tables – A sequence of Table [https://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Table] objects to
be added to the returned Source.
Any tables not created as part of declaratively mapping a
class will need to be passed in using this sequence as
scan() cannot sensibly scan for
these objects.

mortar_rdb.testing

Helpers for unit testing when using mortar_rdb

	
class mortar_rdb.testing.TestingBase

	This is a helper class that can either be used to make
declarative_base() return a new, empty Base
for testing purposes.

If writing a suite of unit tests, this can be done as follows:

from mortar_rdb.testing import TestingBase
from unittest import TestCase

class YourTestCase(TestCase):

 def setUp(self):
 self.tb = TestingBase()

 def tearDown(self):
 self.tb.restore()

If you need a fresh Base for a short section of Python
code, TestingBase can also be used as a context manager:

with TestingBase():
 base = declarative_base()
 # your test code here

	
mortar_rdb.testing.register_session(url=None, name='', engine=None, echo=False, transactional=True, scoped=True, config=None, metadata=None)

	This will create a Session [https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session] class for
testing purposes and register it for later use.

The calling parameters mirror those of mortar_rdb.register_session()
but if neither url nor engine is specified then:

	The environment will be consulted for a variable called DB_URL.
If found, that will be used for the url parameter.

	If url is still None, an implicit url of sqlite:// will
be used.

If a Config is passed in then, once
any existing content in the database has been removed, any tables
controlled by that config will be created.

If a MetaData [https://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.MetaData] instance is passed in,
then all tables within it will be created.

Unlike the non-testing register_session, this will
also return an instance of the registered session.

Warning

No matter where the url or engine come from, the entire
contents of the database they point at will be destroyed!

mortar_rdb.sequence

Database independent provision of non-repeating, always-incrementing
sequences of integers.

	
mortar_rdb.sequence.get_sequence(name)

	Obtain a previously registered sequence.
Once obtained, the next()
method should be called as many times as necessary.

Each call will return one system-wide unique integer that will be
greater than any integers previously returned.

	
mortar_rdb.sequence.register_sequence(name, session, impl=<class 'mortar_rdb.sequence.generic.SequenceImplementation'>)

	Register a sequence for later user.

	Parameters

	
	name – A string containing the name of the sequence.

	session – A Session [https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session] instance that
will be used to set up anything needed in the database
for the sequence to be functional. It will not be retained
and may be closed and discarded once this function has
returned.

	impl – A class whose instances implement
ISequence.
Defaults to
mortar_rdb.sequence.generic.SequenceImplementation.

	
class mortar_rdb.sequence.generic.SequenceImplementation(name, session)

	A sequence implementation that uses a table in the database with
one row for each named sequence.

	
next(session)

	Return the next integer in the sequence using the
Session [https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session] provided.

Warning

The current implementation will lock the row (or
table, depending on which database you use) for the sequence
in question. This could conceivably cause contention
problems if more than one connection is trying to generate
integers from the sequence at one time.

mortar_rdb.interfaces

Internal interface definitions.
Unless you’re doing something pretty special, you don’t need to know about these.

	
interface mortar_rdb.interfaces.ISession

	A marker interface for SQLAlchemy Sessions.
This is so that we can register factories that return them.

	
interface mortar_rdb.interfaces.ISequence

	An interface for sequence utility impementations.
A sequence is a non-repeating, always-incrementing sequence of
integers.

Implementations of this interface will be instantiated
once and then have their next() method called often.

Development

This package is developed using continuous integration which can be
found here:

https://travis-ci.org/Mortar/mortar_rdb

The latest development version of the documentation can be found here:

http://mortar_rdb.readthedocs.org/en/latest/

If you wish to contribute to this project, then you should fork the
repository found here:

https://github.com/Mortar/mortar_rdb

Once that has been done and you have a checkout, you can follow these
instructions to perform various development tasks:

Setting up a virtualenv

The recommended way to set up a development environment is to turn
your checkout into a virtualenv and then install the package in
editable form as follows:

$ virtualenv .
$ bin/pip install -U -e .[test,build]

Running the tests

Once you’ve set up a virtualenv, the tests can be run as follows:

$ bin/pytest

Some of the tests can be run against a specific database to check
compatibility with specific database back ends. To do this, set the
DB_URL environment variable to the SQLAlchemy url of the database
you’d like to use. For example, if you are testing in a unix-like
environment and want to test against a MySQL database, you could do:

$ DB_URL=mysql://scott:tiger@localhost/mortar_rdb_tests bin/test

Building the documentation

The Sphinx documentation is built by doing the following from the
directory containing setup.py:

$ source bin/activate
$ cd docs
$ make html

To check that the description that will be used on PyPI renders properly,
do the following:

$ python setup.py --long-description | rst2html.py > desc.html

The resulting desc.html should be checked by opening in a browser.

Making a release

To make a release, just update the version in setup.py,
update the change log, tag it
and push to https://github.com/Mortar/mortar_rdb
and Travis CI should take care of the rest.

Once Travis CI is done, make sure to go to
https://readthedocs.org/projects/mortar_rdb/versions/
and make sure the new release is marked as an Active Version.

Changes

3.0.0 (7 Mar 2019)

	Drop support for the ancient SQLAlchemy extension mechanism.

2.2.1 (15 Aug 2016)

	Stop passwords showing in logging from
Scripts.

2.2.0 (29 Oct 2015)

	More careful password masking.

	Better support for using
controlled.Scripts as part of another script framework.

2.1.1 (4 Oct 2015)

	Deploy to PyPI using Travis.

2.1.0 (4 Oct 2015)

	Drop support for Python 2.6.

	Add support for Python 3.4+.

	Move to Read The Docs for documentation.

	Move to virtualenv and nose for development.

	Move to Travis CI and Coveralls for automated continuous testing.

2.0.0 (29 Oct 2013)

	Remove use of sqlalchemy-migrate, alembic is a better
bet but not yet introduced.

	Much work to better adhere to PEP 8, including renaming the major
functions.

1.2.1 (30 Jun 2011)

	Add setuptools_git to the build chain so that
setuptools include_package_data works once more.

1.2.0 (30 Jun 2011)

	Pass None as the default for echo rather than False on the
advice of Daniel Holth.

	When using register_session(), allow explicit
disabling of two-phase commit.

	No longer log passwords during session registration.

	Specify sqlalchemy 0.6 as a requirement, until
zope.sqlalchemy is ported, mortar_rdb shouldn’t be
used with sqlalchemy 0.7.

1.1.0 (27 Feb 2011)

	Allow passing in
SessionExtension [https://docs.sqlalchemy.org/en/latest/orm/deprecated.html#sqlalchemy.orm.interfaces.SessionExtension] instances to
both registerSession() functions.

	Fixed a bug that resulted in an exception when passing echo=True
to mortar_rdb.testing.registerSession() but not passing a
url.

1.0.1 (19 Feb 2011)

	Fixed a missing declaration of dependency on zope.dottedname.

1.0.0 (18 Feb 2011)

	Initial Release.

License

Copyright (c) 2011-2015 Simplistix Ltd, 2015-2018 Chris Withers

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mortar_rdb	

 	
 	
 mortar_rdb.controlled	

 	
 	
 mortar_rdb.interfaces	

 	
 	
 mortar_rdb.sequence	

 	
 	
 mortar_rdb.sequence.generic	

 	
 	
 mortar_rdb.testing	

Index

 C
 | D
 | G
 | I
 | M
 | N
 | R
 | S
 | T

C

 	
 	Config (class in mortar_rdb.controlled)

 	
 	create() (mortar_rdb.controlled.Scripts method)

D

 	
 	declarative_base() (in module mortar_rdb)

 	
 	drop() (mortar_rdb.controlled.Scripts method)

 	drop_tables() (in module mortar_rdb)

G

 	
 	get_sequence() (in module mortar_rdb.sequence)

 	
 	get_session() (in module mortar_rdb)

I

 	
 	ISequence (interface in mortar_rdb.interfaces)

 	
 	ISession (interface in mortar_rdb.interfaces)

M

 	
 	mortar_rdb (module)

 	mortar_rdb.controlled (module)

 	mortar_rdb.interfaces (module)

 	
 	mortar_rdb.sequence (module)

 	mortar_rdb.sequence.generic (module)

 	mortar_rdb.testing (module)

N

 	
 	next() (mortar_rdb.sequence.generic.SequenceImplementation method)

R

 	
 	register_sequence() (in module mortar_rdb.sequence)

 	
 	register_session() (in module mortar_rdb)

 	(in module mortar_rdb.testing)

S

 	
 	scan() (in module mortar_rdb.controlled)

 	Scripts (class in mortar_rdb.controlled)

 	
 	SequenceImplementation (class in mortar_rdb.sequence.generic)

 	Source (class in mortar_rdb.controlled)

T

 	
 	TestingBase (class in mortar_rdb.testing)

mortar_rdb

This package ties together SQLAlchemy [http://www.sqlalchemy.org/] and
the component architecture [http://docs.zope.org/zope.component/narr.html] to make it easy to develop projects
using SQLAlchemy through their complete lifecycle.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Documentation

 		
 Installation Instructions

 		
 Basic Usage

 		
 Development

 		
 Testing

 		
 Release

 		
 Sequences

 		
 API Reference

 		
 mortar_rdb

 		
 mortar_rdb.controlled

 		
 Packages, Models and Tables

 		
 Configurations

 		
 mortar_rdb.testing

 		
 mortar_rdb.sequence

 		
 mortar_rdb.interfaces

 		
 Development

 		
 Setting up a virtualenv

 		
 Running the tests

 		
 Building the documentation

 		
 Making a release

 		
 Changes

 		
 3.0.0 (7 Mar 2019)

 		
 2.2.1 (15 Aug 2016)

 		
 2.2.0 (29 Oct 2015)

 		
 2.1.1 (4 Oct 2015)

 		
 2.1.0 (4 Oct 2015)

 		
 2.0.0 (29 Oct 2013)

 		
 1.2.1 (30 Jun 2011)

 		
 1.2.0 (30 Jun 2011)

 		
 1.1.0 (27 Feb 2011)

 		
 1.0.1 (19 Feb 2011)

 		
 1.0.0 (18 Feb 2011)

 		
 License

_static/up-pressed.png

_static/up.png

_static/plus.png

